Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Nat Commun ; 13(1): 6615, 2022 Nov 03.
Article in English | MEDLINE | ID: covidwho-2106405

ABSTRACT

Respiratory failure and mortality from COVID-19 result from virus- and inflammation-induced lung tissue damage. The intestinal microbiome and associated metabolites are implicated in immune responses to respiratory viral infections, however their impact on progression of severe COVID-19 remains unclear. We prospectively enrolled 71 patients with COVID-19 associated critical illness, collected fecal specimens within 3 days of medical intensive care unit admission, defined microbiome compositions by shotgun metagenomic sequencing, and quantified microbiota-derived metabolites (NCT #04552834). Of the 71 patients, 39 survived and 32 died. Mortality was associated with increased representation of Proteobacteria in the fecal microbiota and decreased concentrations of fecal secondary bile acids and desaminotyrosine (DAT). A microbiome metabolic profile (MMP) that accounts for fecal secondary bile acids and desaminotyrosine concentrations was independently associated with progression of respiratory failure leading to mechanical ventilation. Our findings demonstrate that fecal microbiota composition and microbiota-derived metabolite concentrations can predict the trajectory of respiratory function and death in patients with severe SARS-Cov-2 infection and suggest that the gut-lung axis plays an important role in the recovery from COVID-19.


Subject(s)
COVID-19 , Pneumonia , Respiratory Insufficiency , Humans , SARS-CoV-2 , Bile Acids and Salts , Immunity
2.
Ann Epidemiol ; 74: 118-124, 2022 10.
Article in English | MEDLINE | ID: covidwho-2035750

ABSTRACT

PURPOSE: During the initial 12 months of the pandemic, racial and ethnic disparities in COVID-19 death rates received considerable attention but it has been unclear whether disparities in death rates were due to disparities in case fatality rates (CFRs), incidence rates or both. We examined differences in observed COVID-19 CFRs between U.S. White, Black/African American, and Latinx individuals during this period. METHODS: Using data from the COVID Tracking Project and the Centers for Disease Control and Prevention COVID-19 Case Surveillance Public Use dataset, we calculated CFR ratios comparing Black and Latinx to White individuals, both overall and separately by age group. We also used a model of monthly COVID-19 deaths to estimate CFR ratios, adjusting for age, gender, and differences across states and time. RESULTS: Overall Black and Latinx individuals had lower CFRs than their White counterparts. However, when adjusting for age, Black and Latinx had higher CFRs than White individuals among those younger than 65. CFRs varied substantially across states and time. CONCLUSIONS: Disparities in COVID-19 case fatality among U.S. Black and Latinx individuals under age 65 were evident during the first year of the pandemic. Understanding racial and ethnic differences in COVID-19 CFRs is challenging due to limitations in available data.


Subject(s)
COVID-19 , Aged , Ethnicity , Health Status Disparities , Humans , Pandemics , SARS-CoV-2 , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL